- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Saccardi, Brian (2)
-
Brinkerhoff, Craig B (1)
-
Gleason, Colin J (1)
-
Winnick, Matthew J (1)
-
Winnick, Matthew J. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Inland waters emit significant amounts of carbon dioxide (CO2) to the atmosphere; however, the global magnitude and source distribution of inland water CO2emissions remain uncertain. These fluxes have previously been “statistically upscaled” by independently estimating dissolved CO2concentrations and gas exchange velocities to calculate fluxes. This scaling, while robust and defensible, has known limitations in representing carbon source limitations and spatial variability. Here, we develop and calibrate a CO2transport model for the continental United States, simulating carbon transport and transformation in >22 million hydraulically connected rivers, lakes, and reservoirs. We estimate 25% lower CO2fluxes compared to upscaling estimates forced by the same observational calibration data. While precise CO2source distribution estimates are limited by the resolution of model parameterizations, our model suggests that stream corridor CO2production dominates over groundwater inputs at the continental scale. Our results further suggest that the lack of observational networks for groundwater CO2and scalable metabolic models of aquatic CO2production remain the most salient barriers to further coupling of our model with other Earth system components.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Winnick, Matthew J.; Saccardi, Brian (, Global Biogeochemical Cycles)Abstract Rivers and streams play an important role within the global carbon cycle, in part through emissions of carbon dioxide (CO2) to the atmosphere. However, the sources of this CO2and their spatiotemporal variability are difficult to constrain. Recent work has highlighted the role of carbonate buffering reactions that may serve as a source of CO2in high alkalinity systems. In this study, we seek to develop a quantitative framework for the role of carbonate buffering in the fluxes and spatiotemporal patterns of CO2and the stable and radio‐ isotope composition of dissolved inorganic carbon (DIC). We incorporate DIC speciation calculations of carbon isotopologues into a stream network CO2model and perform a series of simulations, ranging from the degassing of a groundwater seep to a hydrologically‐coupled 5th‐order stream network. We find that carbonate buffering reactions contribute >60% of emissions in high‐alkalinity, moderate groundwater‐CO2environments. However, atmosphere equilibration timescales of CO2are minimally affected, which contradicts hypotheses that carbonate buffering maintains high CO2across Strahler orders in high alkalinity systems. In contrast, alkalinity dramatically increases isotope equilibration timescales, which acts to decouple CO2and DIC variations from the isotopic composition even under low alkalinity. This significantly complicates a common method for carbon source identification. Based on similar impacts on atmospheric equilibration for stable and radio‐ carbon isotopologues, we develop a quantitative method for partitioning groundwater and stream corridor carbon sources in carbonate‐dominated watersheds. Together, these results provide a framework to guide fieldwork and interpretations of stream network CO2patterns across variable alkalinities.more » « less
An official website of the United States government
